Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Sci Rep ; 12(1): 21427, 2022 Dec 11.
Article in English | MEDLINE | ID: covidwho-2160308

ABSTRACT

High traffic touch surfaces such as doorknobs, countertops, and handrails can be transmission points for the spread of pathogens, emphasizing the need to develop materials that actively self-sanitize. Metals are frequently used for these surfaces due to their durability, but many metals also possess antimicrobial properties which function through a variety of mechanisms. This work investigates metallic alloys comprised of several metals which individually possess antimicrobial properties, with the target of achieving broad-spectrum, rapid sanitation through synergistic activity. An entropy-motivated stabilization paradigm is proposed to prepare scalable alloys of copper, silver, nickel and cobalt. Using combinatorial sputtering, thin-film alloys were prepared on 100 mm wafers with ≈50% compositional grading of each element across the wafer. The films were then annealed and investigated for alloy stability. Antimicrobial activity testing was performed on both the as-grown alloys and the annealed films using four microorganisms-Phi6, MS2, Bacillus subtilis and Escherichia coli-as surrogates for human viral and bacterial pathogens. Testing showed that after 30 s of contact with some of the test alloys, Phi6, an enveloped, single-stranded RNA bacteriophage that serves as a SARS-CoV-2 surrogate, was reduced up to 6.9 orders of magnitude (> 99.9999%). Additionally, the non-enveloped, double-stranded DNA bacteriophage MS2, and the Gram-negative E. coli and Gram-positive B. subtilis bacterial strains showed a 5.0, 6.4, and 5.7 log reduction in activity after 30, 20 and 10 min, respectively. Antimicrobial activity in the alloy samples showed a strong dependence on the composition, with the log reduction scaling directly with the Cu content. Concentration of Cu by phase separation after annealing improved activity in some of the samples. The results motivate a variety of themes which can be leveraged to design ideal antimicrobial surfaces.


Subject(s)
Anti-Infective Agents , COVID-19 , Humans , Alloys/pharmacology , Escherichia coli , SARS-CoV-2 , Anti-Infective Agents/pharmacology
2.
Frontiers in pharmacology ; 12, 2021.
Article in English | EuropePMC | ID: covidwho-1602644

ABSTRACT

Amentoflavone is an active phenolic compound isolated from Selaginella tamariscina over 40 years. Amentoflavone has been extensively recorded as a molecule which displays multifunctional biological activities. Especially, amentoflavone involves in anti-cancer activity by mediating various signaling pathways such as extracellular signal-regulated kinase (ERK), nuclear factor kappa-B (NF-κB) and phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), and emerges anti-SARS-CoV-2 effect via binding towards the main protease (Mpro/3CLpro), spike protein receptor binding domain (RBD) and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. Therefore, amentoflavone is considered to be a promising therapeutic agent for clinical research. Considering the multifunction of amentoflavone, the current review comprehensively discuss the chemistry, the progress in its diverse biological activities, including anti-inflammatory, anti-oxidation, anti-microorganism, metabolism regulation, neuroprotection, radioprotection, musculoskeletal protection and antidepressant, specially the fascinating role against various types of cancers. In addition, the bioavailability and drug delivery of amentoflavone, the molecular mechanisms underlying the activities of amentoflavone, the molecular docking simulation of amentoflavone through in silico approach and anti-SARS-CoV-2 effect of amentoflavone are discussed.

4.
Lancet ; 395(10235): 1517-1520, 2020 05 09.
Article in English | MEDLINE | ID: covidwho-72046

ABSTRACT

Since the outbreak of coronavirus disease 2019 (COVID-19), clinicians have tried every effort to understand the disease, and a brief portrait of its clinical features have been identified. In clinical practice, we noticed that many severe or critically ill COVID-19 patients developed typical clinical manifestations of shock, including cold extremities and weak peripheral pulses, even in the absence of overt hypotension. Understanding the mechanism of viral sepsis in COVID-19 is warranted for exploring better clinical care for these patients. With evidence collected from autopsy studies on COVID-19 and basic science research on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and SARS-CoV, we have put forward several hypotheses about SARS-CoV-2 pathogenesis after multiple rounds of discussion among basic science researchers, pathologists, and clinicians working on COVID-19. We hypothesise that a process called viral sepsis is crucial to the disease mechanism of COVID-19. Although these ideas might be proven imperfect or even wrong later, we believe they can provide inputs and guide directions for basic research at this moment.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections , Cytokines/metabolism , Lung , Pandemics , Pneumonia, Viral , Sepsis/virology , Autopsy , Blood Coagulation Disorders/virology , COVID-19 , Coronavirus Infections/complications , Critical Illness , Endothelium , Epithelium , Humans , Inflammation , Lung/immunology , Lung/pathology , Macrophages , Pneumonia, Viral/complications , SARS-CoV-2 , Severity of Illness Index , Shock/etiology
SELECTION OF CITATIONS
SEARCH DETAIL